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Abstract

Turbulent momentum and heat transport in idealized Czochralski crystal growth configurations is investigated by means of

direct numerical simulation. The analysis of the flow data focuses on the influence of crystal and crucible rotation on the flow

structures and the development of temperature fluctuations. A numerical parameter study is performed to investigate how the

variation of the numerous flow parameters affects the turbulent transport processes. Finally, a direct numerical simulation is

conducted with parameters taken from experiment in order to allow a direct comparison between numerical and experimental

results. It is found that counter-rotation of the crystal and crucible leads to a complex flow, which is characterized by three major

recirculation zones, if crucible rotation dominates the flow. The dynamics of the flow are controlled by centrifugal forces coun-

teracting buoyancy and surface tension effects. High temperature fluctuations are created within or close to the crystallization zone.

Neither a variation of the melt height, nor a reduction of the crystal rotation rate or a change of the Grashof and Marangoni

numbers has a major effect on the bulk flow structure and overall heat transfer. Increasing rotation of the crystal changes the bulk

flow structure strongly and leads to an increased value of maximum rms temperature fluctuations, the position of which is shifted

towards the crucible bottom. A shifted position of maximum rms temperature fluctuations is also observed if heat radiation across

the free surface is taken into account.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Semiconductor industry has a high demand for pure

silicon crystal, which is needed to produce all sorts of
electronical devices. Around 90% of the worldwide sili-

con demand is grown utilizing the Czochralski process.

In Czochralski crystal growth configurations the low

Prandtl number silicon melt is kept in a cylindrical

crucible. Heating the crucible side wall gives rise to

buoyant convection. The crystal is pulled from the free

surface at rates between a few millimeters to centimeters

per second. Along the free surface, Marangoni convec-
tion develops due to radial temperature gradients be-
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tween the side wall and the comparably cold cylindrical

crystal. Crucible and crystal are commonly rotated in

opposite directions, so that centrifugal forces counteract

buoyancy and surface-tension driven convection. In
addition, thermal conduction and heat radiation at the

free surface induce losses of heat to the surrounding.

The fluid flow and heat transfer processes in the melt

of a Czochralski growth system are extremely complex,

since several effects arise simultaneously in this process.

Among the associated instabilities are the Rayleigh–

B�enard, baroclinic and K€uppers–Lortz instabilities.

They lead to time-dependent three-dimensional motions
in the melt, which influence the transport of dopant,

impurities and heat to the crystal/melt interface and thus

determine the purity of the crystal.

That the Czochralski melt flow is turbulent, has been

already suspected about thirty years ago by Wilcox and

Fullmer (1965) who used thermocouples to measure

temperature fluctuations in a calcium fluoride melt (with

a Pr number of the order of 1 (O[1]) confined in a rather
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Nomenclature

~b buoyancy vector

c capillary coefficient

g gravitational acceleration

Gr Grashof number

Ma Marangoni number

p pressure

Pr Prandtl number

r radial coordinate
R radius

Re Reynolds number based on Ub, D
~u velocity vector

ub buoyancy velocity scale

uz, uu, ur velocity components in axial, circumferen-

tial, radial direction

z axial coordinate

Greeks

a thermal expansion coefficient

k thermal conductivity

u azimuthal coordinate

r radiation constant

q density

e dissipation rate

eh emission coefficient

c thermal diffusivity

m kinematic viscosity
x rotational frequency

Other symbols

h��i Reynolds average

ð��Þ0 fluctuation

ð��Þs notation for crystal

ð��Þc notation for crucible
r gradient

r2 Laplacian
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small crucible (Gr ¼ 106). Most of the experimental

investigations alluding to the fluctuating nature of the

flow have been done in rather small melt volumes of too

high Prandtl number. One reason for that might be that

the experimental investigation of these low Prandtl

number turbulent flow and heat transport processes fa-

ces lots of difficulties. In large scale growth systems the

flow is mostly turbulent, the melts are usually opaque
and due to their high freezing temperature unsuitable

for most tracer particles.

The convection of a transparent fluid (Prandtl number

O[1]) forced by rotation of the crystal in a non-rotating

heated crucible was investigated in the experiment of

Jones (1989). In the vicinity of the crystal he observed

temperature fluctuations of high amplitude. From tem-

perature measurements by Kuroda et al. (1982) it is
known that temperature fluctuations of large amplitude

are responsible for an increased concentration of micro-

defects in the crystal.

For the low Grashof number regime there have been a

number of time-dependent two and three-dimensional

numerical simulations of Czochralski melt flow.Mihelcic

et al. (1984) were among the first to attempt three-

dimensional simulations studying the bulk flow structure
and transition from a two to three-dimensional flow

state. Bottaro and Zebib (1989) simulated the three-

dimensional time-dependent buoyant flow in a cylindri-

cal confinement without taking the rotation of the cru-

cible and crystal into account. Also in a vertical cylinder

heated from below Wagner et al. (1994) computed criti-

cal thresholds for the breakdown of axisymmetry in

surface-tension and buoyancy driven flows. For an as-
pect ratio (height to radius) of 1 and a Prandtl number of
Pr ¼ 6:7 they observed a direct transition from the qui-

escent state to a three-dimensional surface-driven flow

state.

Later Xiao and Derby (1995) performed numerical

simulations to focus on the three-dimensional oscilla-

tory state of the Czochralski flow for a high Prandtl

number fluid (Pr ¼ 8). A bulk-flow model is applied

to compute the flow for a Grashof number Gr ¼
2:5� 105 with a Galerkin finite element method. Inves-

tigating the transition from axisymmetric to non-axi-

symmetric flow states they observe a strong influence on

the temperature distribution and heat transfer through

the melt.

Recently Vizman et al. (2001) reported temperature

measurements at different locations within a silicon melt

kept in a small industrial Czochralski crucible of radius
Rc ¼ 0:17 m. For the same configuration Enger et al.

(2001) performed marginally resolved numerical simu-

lations on structured but curvilinear grids for Grashof

numbers up to Gr ¼ 109. They showed that their simu-

lated temperature data agree fairly well with the tem-

perature measurements of Vizman et al. (2001).

It is the aim of this work to investigate the influence

that varying rotation rates of crucible and crystal, heat
radiation at the free surface, different melt heights

and crucible dimensions have on the development of

temperature fluctuations at high Grashof numbers

ranging from 1.0 · 108 to 2.0 · 109. This is done by

means of Direct Numerical Simulation on cylindrical

grids with up to 4.5 million grid points. In this study the

Czochralski configuration is idealized in the sense that

a flat free surface and a flat crystal/melt interface are
assumed.



Fig. 1. Geometry of the Czochralski configuration.
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2. Numerical method

The incompressible Navier–Stokes equations in

Boussinesq approximation

r �~u ¼ 0 ð1Þ

o~u=ot þr � ð~u~uÞ ¼ �rp þr2~u=Gr þ~b ð2Þ

ou=ot ¼ �ð~u � rÞT þr2T=ðPr
ffiffiffiffiffiffi

Gr
p

Þ ð3Þ

are integrated applying Schumann’s volume balance

procedure (Schumann, 1973) in cylindrical coordinates.

The nabla operator r and the velocity vector ~u ¼
ðuz; uu; urÞ in Eqs. (1)–(3) are non-dimensionalized with

the crucible radius Rc and the buoyancy velocity scale

ub ¼ ðagRcðTc � TsÞÞ1=2. A dimensionless temperature is

defined by (2T � ðTc þ TsÞÞ=ð2ðTc � TsÞ).~b represents the

dimensionless buoyancy vector. The pressure p and time

t are made dimensionless with qb and Rc=ub, respec-

tively.

The Grashof number Gr ¼ ðagR3
cðTc � TsÞÞ=m2 and

the Prandtl number Pr ¼ m=c ¼ 0:0175 contain the

thermal expansion coefficient a ¼ 10�4 1/K, the kine-

matic viscosity m ¼ 3:12� 10�7 m2/s, the thermal con-

ductivity c and the gravitational acceleration g. Their
values are those of a Si-melt.

Integrating Eqs. (1)–(3) provides a set of spatially

discrete equations on staggered grids. Utilizing second

order central interpolation and differentiation schemes
leads to a method which is suitable for DNS. Within a

second order semi-implicit time integration scheme all

convection/diffusion terms of the momentum equations

containing derivatives in circumferential direction as

well as all diffusive terms of the heat conduction equa-

tion are integrated implicitly by a Crank-Nicholson time

step. The remaining convection terms are treated

explicitly with a Leapfrog time step, which is restricted
by a linear stability criterion.

A fractional step approach provides the oscillation-

free coupling between pressure and velocity fields and

leads to a three dimensional Poisson equation for the

pressure correction, which has to be solved at each time

step. A 3D-Helmholtz equation has to be solved due to

the implicit treatment of the temperature. The direct

solutions of these elliptic equations are obtained using
FFTs in u-direction and cyclic reduction algorithms for

the remaining 2D Helmholtz problems. The 1D Helm-

holtz problems associated with the implicit treatment of

the u-derivatives in the momentum equations are solved

by a tridiagonal matrix algorithm.
3. Boundary conditions and geometrical outline

The cylindrical computational domain is presented in

Fig. 1. A crystal of radius Rs, the axis of which coincides
with the axis of the cylindrical crucible, grows out of a

melt of height H at the free surface. The freezing tem-

perature of silicone (1485 K) defines the dimensionless

crystal temperature Ts ¼ �0:5. Heating at the crucible
sidewall is modelled assuming a constant temperature

Tc ¼ 0:5 in most simulations. Boundary conditions at

the side and bottom walls of the crucible and the

interface to the crystal are the impermeability condition

for the wall normal components and the no slip condi-

tions for the tangential velocity components. The solid-

body rotation of the crucible and the crystal are imposed

on the circumferential velocity component at the crystal/
melt and crucible-bottom/melt boundaries. Fixed tem-

perature boundary conditions are specified at the side

wall of the crucible and the crystal/melt interface. For

most cases the bottom of the crucible and the free sur-

face are assumed to be adiabatic. The flat free surface

further forces the axial velocity component to vanish.

Finally, at the free surface, shear and heat boundary

conditions (4)–(6) are discretized.

our=oz ¼ �Ma=ðPr
ffiffiffiffiffiffi

Gr
p

ÞoT=oz ð4Þ

ouu=oz ¼ �Ma=ðPr
ffiffiffiffiffiffi

Gr
p

ÞoT=ðrouÞ ð5Þ

oT =oz ¼ �ð4RcehrT 3
s =kÞT � ehrRcðT 4

s � T 4
h Þ=ðkDT Þ ð6Þ

In these equations Ma ¼ ðcRcðTc � TsÞÞ=c defines the

Marangoni number which contains the capillary coeffi-

cient c ¼ 0:149 according the value for a Si-melt open to

the ambient air. Furthermore, r ¼ 5:75� 10�8 J/

(sm2 K4) denotes the radiation constant, eh ¼ 0:23 the

emission coefficient, k ¼ 46:6 J/(smK) the thermal
conductivity and Th the background temperature.
4. Results

The different flow parameters used in the direct

numerical simulations (DNS) discussed below are



Table 1

Flow parameters and grid points of turbulent Czochralski flow simulations (Nu ¼ 128 in all cases)

DNS 1 2 3 4 5 6 7 8

Nz, Nr 196, 174 66, 92 66, 92 130, 130 196, 196 130, 130 130, 130 131, 174

Gr 108 108 108 108 109 108 108 1.6· 109
Ma 36,000 36,000 36,000 36,000 70,000 36,000 5000 28,000

Re 4712 4712 76.7 20,950 14,902 4712 4712 16782

xc=xs )0.7 )0.7 )43.0 )0.1 )0.7 )0.7 )0.7 )0.25
H=Rc 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5
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summarized in Table 1. The parameter combination of

DNS1 defines the reference case of a crucible with the

radius Rc ¼ 4:8 cm rotating at 16.8 rpm and having a

temperature difference of DT ¼ Tc � Ts ¼ 91:4 K. This

leads to a Grashof number Gr ¼ 108, a Marangoni

number Ma ¼ 36000 and a Reynolds number based on

the angular frequency xs and the radius of the crystal of

Re ¼ xsR2
s=m ¼ 4712. Furthermore, a rotation ratio

xc=xs ¼ �0:7 was specified. For all simulations grids

with Nu ¼ 128 points in u-direction were used.

Regarding the axial and radial directions the number of

grid points Nz and Nr used are summarized in Table 1.

With DNS2–DNS7 we study the influence of parameter

variations on the turbulent momentum and heat trans-

port comparing the results to those obtained in DNS1.

For DNS1–DNS7 the ratio between the crystal and
crucible radius was fixed to Rs=Rc ¼ 0:5. Solely for

DNS8, which was performed to compare our results to

temperature measurements by Wacker Siltronic (2001),

a ratio Rs=Rc ¼ 0:294 was specified.

DNS1 was started at t ¼ 0 with the initial field

ur ¼ uu ¼ uz ¼ 0; T ¼ Tc þ Trandom ð7Þ
where Trandom stands for numerically created random

temperature perturbations between )0.1 and 0.1. After

the solution of DNS1 reached a statistically steady state,
Fig. 2. Snapshot of the instantaneous radial velocity component ur (ðurÞmax ¼
dashed contour lines represent positive/negative values.
an instantaneous flow field was interpolated on the other

grids to define the initial turbulent fields for DNS2-

DNS8. After each of the simulations reached a statisti-

cally steady state more than 1500 realizations with a

time lag of 50 time steps (one time step corresponding to

approximately 7 · 10�4 problem times R=ub) were aver-

aged in circumferential direction and in time to obtain

stable statistical values.

4.1. Instantaneous fields

In a perspective view contours of the radial velocity

component and of the temperature field which were

calculated in DNS1 are shown in Fig. 2 (left). Buoyancy

drives the melt upwards along the heated crucible side

wall as indicated by the wall parallel isotherms in this
region (Fig. 2 (right)).

The flow turns inward at the meniscus and moves

along the free surface creating a flow towards the cyl-

inder axis. In the vicinity of the crystal the fluid en-

counters the outward flow driven by centrifugal effects

due to crystal rotation. These two counteracting mech-

anisms lead to local ejections of cold fluid into the

buoyancy driven hot recirculation zone, creating large
amplitude temperature fluctuations there, as indicated

by the dashed isotherms in the vicinity of the crystal
1:497, ðurÞmin ¼ �1:581) and the instantaneous temperature T . Solid/
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edge at the free surface in Fig. 2 (right). They are also

visible in a cross-section at distance 0.01Rc from the free

surface and are shown in Fig. 3, where contour lines of

temperature fluctuations T 0 having amplitudes between
)0.295 and 0.236 (see Fig. 3 (right)) are plotted.

4.2. Statistically averaged flow fields

Streamlines of the mean velocities in a (z; r)-plane in

Fig. 4 (left) reveal four major recirculation zones for

DNS1. One of these cells develops underneath the

crystal close to the bottom of the crucible, another one
along the crucible wall, the third one just underneath the

free surface and the crystal and a fourth one between the

latter two. The contours of the circumferential velocity

component, which dominates the momentum transport

close to the crucible wall, are predominantly vertically

oriented, as shown in Fig. 4 (right). Only in a thin layer

along the bottom and top boundaries do the high gra-

dients of the contours reflect a transport of melt with a
Fig. 3. Instantaneous (left) and fluctuating (right) isotherms in a cross-section

positive/negative and +/· minimum/maximum values.

Fig. 4. Streamlines of the mean velocity fields (left) and contours of the cir

DNS1 (reference case).
low angular momentum towards the crucible wall at the

bottom wall and of high angular momentum towards

the crystal edge just below the free surface.

Similar to the instantaneous temperature field the
isotherms of the mean temperature are vertically ori-

ented near the side wall of the crucible as depicted in

Fig. 5 (left). The cold fluid underneath the crystal is

driven outward by the crystal rotation creating high

temperature gradients when heated up by the fluid of the

buoyancy driven recirculation zone. The mean iso-

therms underneath the crystal are aligned with the

crystal/melt interface fulfilling a necessary condition for
a vertically uniform crystal growth. Also beneficial for

solidification is the encapsulation of cold fluid under-

neath the crystal since this prevents undercooling of the

melt.

Contours of rms temperature fluctuations are pre-

sented in Fig. 5 (right). The position of the maximum

rms temperature fluctuation is located within the crys-

tallization zone close to the crystal edge with values of
(r;u) located 0:01Rc below the free surface. Solid/dashed lines represent

cumferential velocity component (right) projected into (z; r)-planes of



Fig. 5. Mean and rms-values of isotherms for DNS1 (reference case). Solid/dashed lines represent positive/negative values.
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Trms ¼ 0:17 (�15.4 K). Instantaneous temperature fluc-

tuations even reach values of 28 K. These large tem-

perature fluctuations are the most probable cause of

micro-defects in the crystal.
The skewness of the temperature fluctuations (nor-

malized with its variance) is a quantity which (unlike the
Fig. 6. Contours of the skewness of temperature fluctuations in (a) and com

radial direction in (b–d). Solid/dashed lines represent positive/negative value
skewness of the velocity fluctuations) does not appear in

the transport equation of the temperature variance.

However, it reveals the nature of the temperature fluc-

tuations, i.e. it characterizes the frequency and size of
the fluctuations above or below the local mean. At the

crystal melt interface it indicates the extent of periods of
ponents of the turbulent heat transport vector in axial, azimuthal and

s and +/· denote minimal/maximal values.
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rapid solidification or melt-back of the crystal interface.

Fig. 6(a) contains contour lines of the temperature

fluctuation’s skewness in the case of counter-rotation of

crystal and crucible.
Maximum positive fluctuations are observed imme-

diately below the solid/liquid interface. The strong radial

gradient of this quantity below the crystal can be ex-

pected to cause defects in the crystal.

The heat transport in axial direction in a plane con-

taining the crucible axis, as plotted in Fig. 6(b), is po-

sitive in most parts of the domain. Only near the side

wall, where the flow has boundary layer characteristics,
it is negative, mainly due to production by the mean

radial temperature gradient and by mean shear (which

are the dominant mechanisms). The radial turbulent

heat flux (Fig. 6(d)), on the other hand, transports heat

from the sidewall to the core of the silicon melt. Similar

effects (i.e. a heat transport against the flow direction

and away from the wall) have also been observed in fully

developed pipe flow by Lai and So (1990) and in
supersonic boundary layers along adiabatic and cooled

walls by LeRibault and Friedrich (1997) with the help of

modelled transport equations for the turbulent heat

fluxes. The circumferential heat transport due to tur-

bulent motion in Fig. 6(c) reflects the effects of crystal

and crucible rotation and has to be interpreted in con-

nection with the mean streamlines (Fig. 4).

4.3. Spatial resolution requirements

An upper limit for the mean mesh size hmin of a DNS

was derived by Gr€otzbach (1983) demanding that the

Kolmogorov length scale lk ¼ ðe=m3Þ1=4 has to be re-

solved on the mesh.

h ¼ ðrDuDrDzÞ1=3 6 pðm3=eÞ1=4 or hmin ¼ p=e1=4maxGr
�3=8

ð8Þ
In Eq. (8) the dimensionless mean mesh size hmin de-

pends on the Grashof number and the dimensionless

dissipation rate e, which is initially unknown. Evaluating

e using DNS1-data, a maximum dissipation rate of

emax ¼ 0:377, which peaks just underneath the crystal

edge and a volume averaged value �e ¼ 0:0066 were ob-
Fig. 7. Streamlines of the mean velocity fields (left) and contours of the cir

DNS2 (low melt height).
tained. Substituting emax into Eq. (8) leads to a mean

mesh size hmin ¼ 0:0044. This must be compared to the

mean mesh size of DNS1, which varies from h ¼ 0:00277
at the centerline to h ¼ 0:0108 at the crucible side wall.
Taking into account that the dissipation rate peaks

underneath the crystal edge for r=Rc ¼ 0:5 and that e is
considerably lower everywhere else in the flow, it is

concluded that the grid is fine enough to resolve all the

major physics.
4.4. Parameter study

The streamlines of the mean velocities in Fig. 7 reflect

the flow in the case of smaller melt height (DNS2), with

the three major recirculation zones revealing similarities

to the flow observed in DNS1.

Although rotation rates of crucible and crystal are

unchanged, the wetting surface at the crucible sidewall

and consequently the influence of crucible rotation is

reduced. This leads to a distribution of the circumfer-
ential velocity component which reflects two character-

istic regions, one below the crystal, where the contours

are predominantly vertically oriented, and a second one,

below the free surface with transversal contours. As

indicated by the dashed isotherms in Fig. 8 cold fluid

extends over more than one half of the melt height,

which indicates that the danger of cristallization of the

melt increases for lower melt heights.
For the lower crystal rotation rate in DNS3,

streamlines of the mean velocity fields in Fig. 9 (left) and

isotherms in Fig. 10 (left) show the same flow structure

as presented in Figs. 7 and 8 for DNS2. Even contours

of rms temperature fluctuations of DNS3 (lower melt

height) in Fig. 8 (right) and of DNS3 (smaller crystal

rotation) in Fig. 10 (right) as well as the position of their

maximum values agree remarkably well. On the other
hand, lower crystal rotation rates and to some degree

lower melt heights damp temperature fluctuations as

indicated by the lower maximum Trms in Figs. 8 (right)

and 10 (right). Therefore, it is concluded that a decrease

of crucible rotation with respect to the parameter com-

bination of DNS1 does not tremendously change the

condition in the cristallization zone. Solely, the contours
cumferential velocity component (right) projected into (z; r)-planes of



Fig. 9. Streamlines of the mean velocity fields (left) and contours of the circumferential velocity component (right) projected into (z; r)-planes of

DNS3 (low crystal rotation). Solid/dashed lines represent positive/negative values.

Fig. 10. Mean (left) and rms-values (right) of isotherms obtained in DNS3 (low crystal rotation). Solid/dashed lines represent positive/negative values.

Fig. 8. Mean (left) and rms-values (right) of isotherms obtained in DNS2 (low melt height). Solid/dashed lines represent positive/negative values.
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of the circumferential velocity component reflect a dif-

ference in flow structure, with horizontally oriented

contours in parts of the melt underneath the free sur-

face. In this region the buoyancy driven recirculation
zone transports melt with a comparably low angular

momentum from the crucible bottom towards the free

surface.
A strong change in the flow structure due to the high

crystal rotation rate is visible in Fig. 11 (DNS4). A single

recirculation zone dominates the mean flow in the (z; r)-
plane, while two smaller cells are observed close to the
upper part of the crucible wall and below the free sur-

face. Additionally, due to the increased rotation of the

crystal, a small recirculation structure is created just



Fig. 11. Streamlines of the mean velocity fields (left) and contours of the circumferential velocity component (right) projected into (z; r)-planes of
DNS4 (high crystal rotation). Solid/dashed lines represent positive/negative values.
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underneath the crystal. Therefore, mixing is enhanced

within the crystallization zone leading to more uniform

radial concentration gradients of impurities and dopants
on the one hand. On the other hand this recirculation

zone also acts as a trap for these substances. With this

intense recirculation, melt with low angular momentum

is mixed with the melt rotating at crucible rotation rates,

which leads to curved contours of the circumferential

velocity component in Fig. 11 (right). As indicated by

the dashed isotherms in Fig. 12 (left) cold fluid extends

over more than one half of the melt height, reflecting
that the probability for undercooling of the melt is in-

creased.

A shift towards the crucible bottom and axis of the

position of maximum rms temperature fluctuation

associated with an increased maximum value of

Trms ¼ 0:181 (�16.5 K) is reflected in Fig. 12 (right).

Although temperature fluctuations of high amplitude

are further increased for high crystal rotation rates,
within the crystallization zone they are damped.
Fig. 12. Mean (left) and rms-values (right) of isotherms obtained in DNS4
values.
Increasing the Grashof number and the Marangoni

number in DNS5 does not significantly change the

structure of the overall momentum and heat transport,
as indicated in Figs. 13 and 14. Solely, the amplitude of

maximum rms temperature fluctuations in Fig. 14 (right)

increases, but its position remains.

Finally in DNS6 and DNS7, heat radiation at the free

surface is taken into account assuming a background

temperature of Th ¼ 1450 K. While DNS6 was per-

formed for the Gr- and Ma-numbers of the reference

case DNS1, the Marangoni number was additionally
reduced in DNS7. Considering heat radiation, it has a

remarkable effect on the radial heat flux close to the

crystal edge as shown in Figs. 16 (left) and 18 (left). In

contradiction to Fig. 5 (left) the isotherms are almost

uniformly distributed along the free surface, reflecting

the decreased radial heat flux at the crystal edge. Obvi-

ously, this also reduces the spatial resolution require-

ments, which are extremely high close to the crystal edge
due to high temperature and velocity gradients, if heat
(high crystal rotation). Solid/dashed lines represent positive/negative



Fig. 13. Streamlines of the mean velocity fields (left) and contours of the circumferential velocity component (right) projected into (z; r)-planes of
DNS5 (high Grashof number). Solid/dashed lines represent positive/negative values.

Fig. 14. Mean (left) and rms-values (right) of isotherms obtained in DNS5 (high Grashof number). Solid/dashed lines represent positive/negative

values.
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radiation is neglected. Heat radiation also damps the

radial momentum transport along the free surface and

weakens the recirculation zone below the free surface in

Fig. 15 (left). At the same time the three recirculation

zones extend down all the way to the crucible bottom,

which leads to the two characteristic regions for the

circumferential velocity field, with vertical contours

underneath the crystal and transversal contours below
the free surface similar to those of Figs. 7 (right) and 9

(right). Additionally, reducing the Marangoni number

also leads to these three recirculation zones, but a con-

tinuous flow in the boundary layer at the crucible bot-

tom enhances mixing and leads to predominantly

vertical contours of the circumferential velocity com-

ponent as indicated in Fig. 17 (right). While the position

of maximum rms temperature fluctuations is shifted
away from the crystal edge with lower absolute values

for DNS6 in Fig. 16 (right), these values increase if the

Ma-number is additionally decreased (see Fig. 18

(right)). For this case the position of maximum rms
temperature fluctuations additionally moves away from

the crystal edge towards the crucible axis.
4.5. Comparison between experiment and numerical

simulation

DNS8, the flow parameters of which are presented in

Table 1, was conducted to compare computed temper-
ature data to measurements, which were performed in a

LEYBOLD EKZ 1300 crucible at Wacker Siltronic in

Burghausen (Germany) (Wacker Siltronic, 2001). The

same configuration was considered by Vizman et al.

(2001) and Enger et al. (2001). In order to ensure com-

parability of the computation with this experiment, the

wall temperature distributions for the DNS were inter-

polated from measured temperatures according to

T ðz=RcÞ ¼ �4:6ðz=RcÞ3 þ 6:85ðz=RcÞ2 � 3:615z=Rc þ 0:5

ð9Þ



Fig. 15. Streamlines of the mean velocity fields (left) and contours of the circumferential velocity component (right) projected into (z; r)-planes of
DNS6 (heat radiation considered). Solid/dashed lines represent positive/negative values.

Fig. 16. Mean (left) and rms-values (right) of isotherms obtained in DNS6 (heat radiation considered). Solid/dashed lines represent positive/negative

values.

Fig. 17. Streamlines of the mean velocity fields (left) and contours of the circumferential velocity component (right) projected into (z; r)-planes of
DNS7 (low Ma number). Solid/dashed lines represent positive/negative values.
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Fig. 18. Mean (left) and rms-values (right) of isotherms obtained in DNS7 (low Ma number). Solid/dashed lines represent positive/negative values.
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T ðr=RcÞ ¼ 0:619ðr=RcÞ2 � 0:119 ð10Þ

Additionally, heat radiation at the free surface was

modelled using two different background temperature

values, Th ¼ 1510 K for 5 cm6 r6 10 cm and Th ¼ 1560

K between r ¼ 10 cm and r ¼ 17 cm (crucible side wall).

The computed streamlines of the mean velocity fields

are presented in Fig. 19. They indicate a flow, which is

characterized by five major recirculation zones. The

mean isotherms shown in Fig. 20 reveal a predominantly
transversal orientation, for which the region of cold melt

is increased. Contours of the rms temperature fluctua-

tions demonstrate the existence of two characteristic
Fig. 19. Streamlines of the mean velocity field (left) and contours of the circu

lines represent positive/negative values.

Fig. 20. Isotherms of the mean temperature (left) and of the rms fluctuatin

positive/negative values.
regions of temperature fluctuations, one below the free

surface with maximum values which are low compared

to those in Fig. 5, and the other one below the crystal,

where the contours are alligned with the crystal/melt

interface.

The comparison of computed and measured values of
mean temperature and rms temperature fluctuations for

6 different positions within the melt is presented in Table

2. The mean temperature values reveal differences of less

than 6% of the overall mean temperature difference DT .
This underlines, that although the Czochralski process

was idealized to some extent, the simulations produce

reliable results. Somewhere higher differences for the
mferential velocity component (right) of DNS8. Solid/dashed contour

g temperature (right) of DNS8. Solid/dashed contour lines represent



Table 2

Comparison of measured and computed mean temperatures and rms temperature fluctuations

z=Rc; r=Rc 0.44, 0.24 0.32, 0.24 0.21, 0.24 0.44, 0.43 0.32, 0.43 0.21, 0.43

hT inum )0.33 )0.19 )0.13 )0.248 )0.121 )0.059
hT iexp )0.30 )0.22 )0.17 )0.279 )0.176 )0.113
Trms;num 0.047 0.058 0.051 0.081 0.064 0.053

Trms;exp 0.037 0.045 0.0395 0.034 0.047 0.042
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rms temperature fluctuations are found. To understand

this, it must be noted, that the thermocouples used for

the measurements in the hot Si-melt do not capture high

frequency temperature fluctuations. This might be the

reason, why the measured rms temperature fluctuations

are low compared to the simulation data for all loca-

tions depicted in Table 2.
5. Conclusions

Direct Numerical Simulations of the turbulent flow in

an idealized Czochralski crystal growth configuration

have been performed for two melt heights, for different

rotation rates of the crystal and crucible and for varying

Marangoni and Grashof numbers.
While subjected to rotation by the crucible, the fluid

is driven up the heated side wall by buoyancy and forced

towards the crystal at the meniscus. From there surface-

tension drives the flow towards the crystal edge, where it

encounters the centrifugally forced flow from under-

neath the crystal. The positions of maximum rms tem-

perature and velocity fluctuations are located within the

crystallization zone just underneath the crystal edge.
Decreasing either the melt height, the rotation rate of

the crystal or changing the Grashof and/or Marangoni

number leads to minor changes in the bulk flow struc-

ture. Especially for low melt heights an increased influ-

ence of cold fluid increases the possibility of

undercooling of the melt underneath the crystal, while

rms temperature fluctuations decrease slightly.

Strong changes in the bulk flow structure are ob-
served for high rotation rates of the crystal. The in-

creased centrifugal forces underneath the crystal drive

one major recirculation zone. Maximum rms tempera-

ture fluctuations increase with the rotation rate of the

crystal. The position of maximum values moves towards

the crucible bottom for DNS4 (high crystal rotation

rate). This shifted position of maximum rms tempera-

ture fluctuations, which is also observed if heat radiation
is modelled and the Marangoni number is decreased,

might lead to more friendly crystal growth conditions.

The trade-off probably is a reduced mixing underneath
the crystal, where impurities and dopant might be

trapped in a small recirculation zone.

Good agreement of mean temperatures, which dif-

fered by less than 6%, was obtained in a comparison of

computed and measured temperatures. This underlines

that geometric idealization of the industrial Czochralski

process is justified.
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